pyLOM.PCA#
Module contents#
- pyLOM.PCA.run(X: ndarray, divide_variance: bool = True, randomized: bool = False, r: int = 1, q: int = 3, seed: int = -1)[source]#
Run PCA analysis of a matrix.
- Parameters:
X (np.ndarray) – data matrix of size [ndims*nmesh,n_temp_snapshots].
divide_variance (bool, optional) – whether or not to normalize the data with the variance. It is only effective when removing the mean (default:
False
).randomized (bool, optional) – whether to perform randomized PCA or not (default:
False
).r (int, optional) – in case of performing randomized PCA, how many modes do we want to recover. This option has no effect when randomized=False (default:
1
).q (int, optional) – in case of performing randomized PCA, how many power iterations are performed. This option has no effect when randomized=False (default:
3
).seed (int, optional) – seed for reproducibility of randomized operations. This option has no effect when randomized=False (default:
-1
).
- Returns:
components and scores.
- Return type:
[(np.ndarray), (np.ndarray)]
- pyLOM.PCA.T2score(P: ndarray, ncomp: int = 1, confidence: float = 0.8)[source]#
Summarize the scores over the ncomp and return the limit for the confidence itnerval according to its probabilistic distribution.
- Parameters:
- Returns:
T2 scores and clustering threshold.
- Return type:
[(np.ndarray), float]