pyLOM#
Subpackages#
- pyLOM.DMD
- pyLOM.GPOD
- pyLOM.GPR
- pyLOM.MANIFOLD
- pyLOM.NN
- Subpackages
- Module contents
plotSnapshot()
plotModalErrorBars()
plotTimeSeries()
Pipeline
Dataset
MinMaxScaler
select_device()
betaLinearScheduler
create_results_folder()
set_seed()
OptunaOptimizer
RegressionEvaluator
RegressionEvaluator.tolerance
RegressionEvaluator.mean_squared_error()
RegressionEvaluator.mean_absolute_error()
RegressionEvaluator.mean_relative_error()
RegressionEvaluator.ae_q()
RegressionEvaluator.l2_error()
RegressionEvaluator.R2()
RegressionEvaluator.print_metrics()
RegressionEvaluator.__call__()
EarlyStopper
MLP
KAN
ChebyshevLayer
JacobiLayer
Autoencoder
VariationalAutoencoder
Encoder2D
Decoder2D
Encoder3D
Decoder3D
ShallowDecoder
PINN
BurgersPINN
Euler2DPINN
NavierStokesIncompressible2DPINN
BoundaryCondition
SHRED
tanh()
relu()
elu()
sigmoid()
leakyRelu()
silu()
- pyLOM.POD
- pyLOM.SPOD
- pyLOM.io
- pyLOM.utils
- Module contents
raiseError()
raiseWarning()
round()
cr()
cr_nvtx()
cr_start()
cr_stop()
cr_info()
nvtxp()
mem()
mem_start()
mem_stop()
mem_info()
worksplit()
writesplit()
is_rank_or_serial()
pprint()
mpi_barrier()
mpi_send()
mpi_recv()
mpi_sendrecv()
mpi_scatter()
mpi_gather()
mpi_reduce()
mpi_bcast()
gpu_device()
gpu_to_cpu()
cpu_to_gpu()
ascontiguousarray()
- Module contents
- pyLOM.math
- Module contents
MAE()
MRE_array()
RMSE()
argsort()
cellCenters()
cholesky()
compute_truncation_residual()
conj()
data_splitting()
diag()
eigen()
energy()
euclidean_d()
fft()
find_random_sensors()
flip()
hammwin()
init_qr_streaming()
inv()
least_squares()
matmul()
matmulp()
normals()
polar()
qr()
r2()
randomized_qr()
randomized_svd()
ridge_regresion()
subtract_mean()
svd()
temporal_mean()
time_delay_embedding()
transpose()
tsqr()
tsqr_svd()
update_qr_streaming()
vandermonde()
vandermondeTime()
vecmat()
vector_mean()
vector_norm()
vector_sum()
- Module contents
Module contents#
- class pyLOM.Dataset(xyz=None, ptable=None, vars=None, order=None, point=True, **kwargs)[source]#
Bases:
object
The Dataset class wraps the position of the nodes and the time instants with the number of variables and relates them so that the operations in parallel are easier.
- __init__(xyz=None, ptable=None, vars=None, order=None, point=True, **kwargs)[source]#
Class constructor
- Inputs:
> xyz: coordinates of the points. > ptable: partition table used. > vars: dictionary containing the variable name and values as
as a python dictionary.
> order: ordering of the points (automatically created if none) > point: True if point data, False if cell data. > kwags: dictionary containing the field name and values as a
python dictionary.
- get_variable(key: str)[source]#
Recover the value of a variable given its key
- Parameters:
key (str) – name of the variable
- Returns:
value of the variable
- Return type:
(np.ndarray)
- split_data(var, mode='reconstruct')[source]#
Generate random training, validation and test masks for a dataset of Nt samples.
- Parameters:
- Returns:
List of arrays containing the identifiers of the training, validation and test samples.
- Return type:
[(np.ndarray), (np.ndarray), (np.ndarray)]
- select_random_sensors(nsensors, bounds, VARLIST, seed=-1)[source]#
Generates a set of coordinats of nsensors random sensors inside the region defined by bounds. Then for each sensor finds the nearest point from the dataset to get its coordinates and dataset value. It creates a new dataset containing all the sensor coordinates and values
- property xyz#
- property y#
- property z#
- property ordering#
- property point#
- property partition_table#
- property vars#
- property varnames#
- property fields#
- property fieldnames#
- class pyLOM.PartitionTable(nparts, ids, elements, points, has_master=False)[source]#
Bases:
object
The partition table class contains information on the partition used for the given dataset or it can generate a new partition
- reorder_points(xyz, conectivity)[source]#
Reorder the points array so that in matches with the partition table, in serial algorithm.
- check_split()[source]#
See if a table has the same number of subdomains than the number of mpi ranks
- classmethod new(nparts, nelems, npoints, has_master=False)[source]#
Create a new partition table, in serial algorithm.
- classmethod from_pyQvarsi(ptable, porder=1, ndime=3, has_master=False)[source]#
Create a partition table from a partition table coming from pyQvarsi
- property n_partitions#
- property Ids#
- property Elements#
- property Points#
- property has_master#
- property nodes#
- class pyLOM.Mesh(mtype, xyz, connectivity, eltype, cellOrder, pointOrder, ptable)[source]#
Bases:
object
The Mesh class wraps the mesh details of the case.
- __init__(mtype, xyz, connectivity, eltype, cellOrder, pointOrder, ptable)[source]#
Class constructor
- classmethod new_struct2D(nx: int, ny: int, x: float, y: float, dimsx: float, dimsy: float, ptable=None)[source]#
- classmethod new_struct3D(nx: int, ny: int, nz: int, x: float, y: float, z: float, dimsx: float, dimsy: float, dimsz: float, ptable=None)[source]#
- classmethod from_pyQvarsi(mesh, ptable=None, sod: bool = False)[source]#
Create the mesh structure from a pyQvarsi mesh structure
- property type#
- property npoints#
- property npointsG#
- property npointsG2#
- property ndim#
- property ncells#
- property ncellsG#
- property ncellsG2#
- property nnodcell#
- property xyz#
- property x#
- property y#
- property z#
- property xyzc#
- property normal#
- property connectivity#
- property cellOrder#
- property pointOrder#
- property partition_table#
- property eltype#
- property eltype2VTK#
- property eltype2ENSI#