pyLOM.DMD#
Module contents#
- pyLOM.DMD.run(X, r, remove_mean=True)[source]#
DMD analysis of snapshot matrix X Inputs:
X[ndims*nmesh,n_temp_snapshots]: data matrix
remove_mean: whether or not to remove the mean flow
- Returns:
DMD Modes - muReal: Real part of the eigenvalues - muImag: Imaginary part of the eigenvalues - b: Amplitude of the DMD modes - X_DMD: Reconstructed flow
- Return type:
Phi
- pyLOM.DMD.frequency_damping(real, imag, dt)[source]#
Computation of the damping ratio and the frequency of each mode
- pyLOM.DMD.reconstruction_jovanovic(Phi, real, imag, t, bJov)[source]#
Reconstruction of the DMD modes according to the Jovanovic method
- pyLOM.DMD.extract_modes(Phi, ivar, npoints, real=True, modes=[], reshape=True)[source]#
Extract modes for a certain variables
- pyLOM.DMD.save(fname, muReal, muImag, Phi, bJov, ptable, nvars=1, pointData=True, mode='w')[source]#
Store DMD variables in serial or parallel according to the partition used to compute the DMD.
- pyLOM.DMD.load(fname, vars=['Phi', 'mu', 'bJov', 'delta', 'omega'], nmod=-1, ptable=None)[source]#
Load DMD variables in serial or parallel according to the partition used to compute the DMD.
- pyLOM.DMD.plotMode(Phi, omega, mesh, dset, ivar, pointData=True, modes=np.array([1], np.int32), **kwargs)[source]#
Plot the real and imaginary parts of a mode
- pyLOM.DMD.ritzSpectrum(real, imag, fig=None, ax=None, cmap=None)[source]#
Given the real and imaginary part of the eigenvalues, plot the Ritz Spectrum together with the unit circle
- pyLOM.DMD.amplitudeFrequency(omega, amplitude, fig=None, ax=None, cmap=None, mark=None, norm=False)[source]#
Given the frequency and the amplitude of the DMD modes, plot the amplitude against the Strouhal number
- pyLOM.DMD.dampingFrequency(omega, delta, fig=None, ax=None, cmap=None, mark=None)[source]#
Given the frequency and the damping ratio of the DMD modes, plot the amplitude against the Strouhal number