pyLOM.GPOD#
Module contents#
- class pyLOM.GPOD.GappyPOD(centered=False, apply_truncation=False, truncation_param=-0.99, reconstruction_method='standard', ridge_lambda=0.01)[source]#
Bases:
object
- __init__(centered=False, apply_truncation=False, truncation_param=-0.99, reconstruction_method='standard', ridge_lambda=0.01)[source]#
Gappy POD model for reconstructing incomplete data using POD modes.
- Parameters:
centered (bool) – Whether to center the data by subtracting the mean.
apply_truncation (bool) – Whether to apply truncation.
truncation_method (float or int) – Threshold for truncation.
reconstruction_method (str) – Reconstruction method (‘standard’ or ‘ridge’).
ridge_lambda (float) – Regularization parameter for ridge reconstruction.
- fit(snapshot_matrix: ndarray, **kwargs) None [source]#
Fit the Gappy POD model using the snapshot matrix.
- Parameters:
snapshot_matrix (np.ndarray) – Training matrix [n_features, n_samples].
- predict(gappy_vector: ndarray) ndarray [source]#
Reconstruct missing data using the fitted Gappy POD model.
- Parameters:
gappy_vector (np.ndarray) – Sparse vector with missing values.
- Returns:
Reconstructed data vector.
- Return type:
np.ndarray
- reconstruct_full_set(incomplete_snapshot: ndarray, iter_num: int) tuple[ndarray, ndarray, ndarray] [source]#
Iteratively reconstruct an incomplete snapshot matrix using Gappy POD.
- Parameters:
incomplete_snapshot (np.ndarray) – Snapshot matrix with missing values (n_features, n_samples).
iter_num (int) – Number of iterations for the iterative reconstruction process.
- Returns:
- Reconstructed snapshot matrix, eigenvalue spectrum across iterations,
and cumulative energy.
- Return type:
- pyLOM.GPOD.set_random_elements_to_zero(vector, percentage)[source]#
Randomly sets a specified percentage of elements in a vector to zero.
- Parameters:
vector (np.ndarray) – Input vector.
percentage (float) – Percentage of elements to set to zero.
- Returns:
Modified vector with zeros.
- Return type:
np.ndarray