pyLOM.MANIFOLD#
Module contents#
- pyLOM.MANIFOLD.isomap(X: ndarray, dims: int, n_size: int, comp: int = 1, verbose: bool = True)[source]#
Computes Isomap embedding using the algorithm of Tenenbaum, de Silva, and Langford (2000).
Parameters: X : ndarray
NxM Data matrix with N points in the mesh for M simulations
- dims: int
Embedding dimensionality to use
- n_sizeint
Neighborhood size (number of neighbors for ‘k’ method)
- comp: int
Component to embed, if more than 1 (defaults to 1, the largest)
- verbose: bool
Display information (default is True)
Returns: Y : ndarray
Contains coordinates for d-dimensional embeddings in Y.
- Rlist
Residual variances for the embedding in Y.
- Endarray
Edge matrix for neighborhood graph.
- pyLOM.MANIFOLD.mds(X: ndarray, dims: int, verbose: bool = True)[source]#
Computes the MDS embedding using a custom approach with squared distances and eigen-decomposition.
Parameters: X : ndarray
NxM Data matrix with N points in the mesh for M simulations
- dimsint
Embedding dimensionality to use (p in your MATLAB code)
Returns: Y : ndarray
Contains coordinates for d-dimensional embeddings in Y.