#!/usr/bin/env python
#
# pyLOM - Python Low Order Modeling.
#
# Python interface for DMD.
#
# Last rev: 30/09/2021
from __future__ import print_function
import numpy as np
from ..utils.gpu import cp
from ..vmmath import vecmat, matmul, temporal_mean, subtract_mean, tsqr_svd, transpose, eigen, cholesky, diag, polar, vandermonde, conj, inv, flip, matmulp, vandermondeTime
from ..POD import truncate
from ..utils import cr_nvtx as cr, cr_start, cr_stop
def _order_modes(muReal, muImag, Phi, bJov):
'''
Order the modes according to its amplitude, forcing that in case of a conjugate eigenvalue, the positive part always is the first one
'''
cnp = cp if type(muReal) is cp.ndarray else np
muReal = muReal[flip(cnp.abs(bJov).argsort())]
muImag = muImag[flip(cnp.abs(bJov).argsort())]
Phi = transpose(transpose(Phi)[flip(cnp.abs(bJov).argsort())])
bJov = bJov[flip(cnp.abs(bJov).argsort())]
p = False
for ii in range(muImag.shape[0]):
if p == True:
p = False
continue
iimag = muImag[ii]
if iimag < 0:
muImag[ii] = muImag[ii+1]
muImag[ii+1] = -muImag[ii]
bJov.imag[ii] = bJov.imag[ii+1]
bJov.imag[ii+1] = -bJov.imag[ii]
Phi.imag[:,ii] = Phi.imag[:,ii+1]
Phi.imag[:,ii+1] = -Phi.imag[:,ii+1]
p = True
continue
if iimag > 0:
p = True
continue
return muReal, muImag, Phi, bJov
[docs]
@cr('DMD.run')
def run(X, r, remove_mean = True):
'''
DMD analysis of snapshot matrix X
Inputs:
- X[ndims*nmesh,n_temp_snapshots]: data matrix
- remove_mean: whether or not to remove the mean flow
Returns:
- Phi: DMD Modes
- muReal: Real part of the eigenvalues
- muImag: Imaginary part of the eigenvalues
- b: Amplitude of the DMD modes
- X_DMD: Reconstructed flow
'''
# Remove temporal mean or not, depending on the user choice
if remove_mean:
cr_start('DMD.temporal_mean',0)
#Compute temporal mean
X_mean = temporal_mean(X)
#Subtract temporal mean
Y = subtract_mean(X, X_mean)
cr_stop('DMD.temporal_mean',0)
else:
Y = X.copy()
# Compute SVD
cr_start('DMD.SVD',0)
U, S, VT = tsqr_svd(Y[:, :-1])
cr_stop('DMD.SVD',0)
# Truncate according to residual
cr_start('DMD.truncate', 0)
U, S, VT = truncate(U, S, VT, r)
cr_stop('DMD.truncate', 0)
# Project A (Jacobian of the snapshots) into POD basis
cr_start('DMD.linear_mapping',0)
aux1 = matmulp(transpose(U), Y[:, 1:])
aux2 = transpose(vecmat(1./S, VT))
Atilde = matmul(aux1, aux2)
cr_stop('DMD.linear_mapping',0)
# Eigendecomposition of Atilde: Eigenvectors given as complex matrix
# NOTE: there is no implementation of eig in cupy yet
cr_start('DMD.modes',0)
muReal, muImag, w = eigen(Atilde)
muReal = cp.asarray(muReal) if type(Atilde) is cp.ndarray else muReal
muImag = cp.asarray(muImag) if type(Atilde) is cp.ndarray else muReal
w = cp.asarray(w) if type(Atilde) is cp.ndarray else muReal
# Mode computation
Phi = matmul(matmul(matmul(Y[:, 1:], transpose(VT)), diag(1/S)), w)/(muReal + muImag*1J)
cr_stop('DMD.modes',0)
# Amplitudes according to: Jovanovic et. al. 2014 DOI: 10.1063
cr_start('DMD.amplitudes',0)
Vand = vandermonde(muReal, muImag, muReal.shape[0], Y.shape[1]-1)
P = matmul(transpose(conj(w)), w)*conj(matmul(Vand, transpose(conj(Vand))))
Pl = cholesky(P)
G = matmul(diag(S), VT)
q = conj(diag(matmul(matmul(Vand, transpose(conj(G))), w)))
bJov = matmul(inv(transpose(conj(Pl))), matmul(inv(Pl), q)) #Amplitudes according to Jovanovic 2014
cr_stop('DMD.amplitudes',0)
# Order modes and eigenvalues according to its amplitude
cr_start('DMD.order',0)
muReal, muImag, Phi, bJov = _order_modes(muReal, muImag, Phi, bJov)
cr_stop('DMD.order',0)
return muReal, muImag, Phi, bJov
[docs]
@cr('DMD.frequency_damping')
def frequency_damping(real, imag, dt):
'''
Computation of the damping ratio and the frequency of each mode
'''
p = cp if type(real) is cp.ndarray else np
mod, arg = polar(real, imag) #Create vmmath/complex.c?
# Computation of the damping ratio of the mode
delta = p.log(mod)/dt
# Computation of the frequency of the mode
omega = arg/dt
return delta, omega
@cr('DMD.mode_computation')
def mode_computation(X, V, S, W):
'''
Computation of DMD Modes
'''
p = cp if type(X) is cp.ndarray else np
return matmul(matmul(matmul(X, transpose(V)), diag(1/S)), p.abs(W))
[docs]
@cr('DMD.reconstruction_jovanovic')
def reconstruction_jovanovic(Phi, real, imag, t, bJov):
'''
Reconstruction of the DMD modes according to the Jovanovic method
'''
Vand = vandermondeTime(real, imag, real.shape[0], t)
return matmul(Phi, matmul(diag(bJov), Vand)).real