Source code for pyLOM.utils.plots

#!/usr/bin/env python
#
# pyLOM - Python Low Order Modeling.
#
# Plotting utilities.
#
# Last rev: 27/10/2021
from __future__ import print_function, division

import numpy as np
import matplotlib, matplotlib.pyplot as plt

from ..vmmath import vector_norm
from ..utils  import cr_nvtx as cr, gpu_to_cpu, raiseWarning


DEFAULTSTYLE = {
    'font'    : {
		'size'  : 16,
		'weight'    : 'normal'
	},
    'legend'  : {
		'fontsize'  : 12 
	},
    'text'    : {
		'usetex'    : False
	},
    'axes'    : {
		'linewidth' : 2.75 
	},
    'savefig' : {
		'bbox'      : 'tight'
	}
}

[docs] def show_plots(): ''' Wrapper to matplotlib.pyplot.show() ''' plt.show()
[docs] def close_plots(): ''' Wrapper to matplotlib.pyplot.close() ''' plt.close()
[docs] def style_plots(styleDict=DEFAULTSTYLE): ''' Define a common plot style in the scripts ''' for key in styleDict.keys(): matplotlib.rc(key,**styleDict[key])
def plotFieldStruct2D(ax,nx,ny,ndim,xyz,field,dim,cmap,clear=False): ''' Plot a 2D point or cell centered field on an structured mesh ''' # Clear the axis if needed if clear: ax.clear() # Obtain the colormap if needed if cmap is None: cmap = plt.get_cmap('coolwarm',256) # Obtain X, Y matrices X = xyz[:,0].reshape((nx,ny),order='c').T Y = xyz[:,1].reshape((nx,ny),order='c').T # Obtain data matrix Z = field.reshape((nx,ny,ndim),order='c').T if ndim > 1 else field.reshape((nx,ny),order='c').T levels = np.linspace(-1e-2, 1e-2, 11) return ax.contourf(X,Y,Z[ndim,:,:] if dim >= 0 else np.linalg.norm(Z,axis=0) if ndim > 1 else Z,cmap=cmap)
[docs] def plotResidual(S,fig=None,ax=None): ''' Given the S matrix as a vector, plot the accumulated residual. ''' S = gpu_to_cpu(S) # Build figure and axes if fig is None: fig = plt.figure(figsize=(8,6),dpi=100) if ax is None: ax = fig.add_subplot(1,1,1) # Compute accumulated residual accumulative_S = np.array([vector_norm(S,ii) for ii in range(S.shape[0])],np.double) accumulative_S /= accumulative_S[0] # Plot accumulated residual ax.semilogy(np.arange(1,S.shape[0]+1),accumulative_S,'bo') # Set labels ax.set_ylabel(r'$\varepsilon_1$') ax.set_xlabel(r'Truncation size') ax.set_title(r'Tolerance') # Return return fig, ax
[docs] def plotModalErrorBars(error:np.ndarray): ''' Do a barplot of a 1D array of errors, where each element is the error associated in the prediction of a mode. ''' indices = np.arange(len(error))+1 cmap = plt.cm.jet colors = cmap(np.linspace(0.1, 0.9, len(error))) fig, ax = plt.subplots(figsize=(20, 3)) bars = ax.bar(indices, error, capsize=5, color=colors, edgecolor='black') ax.set_xlabel("Rank", fontsize=14) ax.set_ylabel("Average Relative Error", fontsize=14) ax.set_xticks(indices[24::25]) ax.set_xticklabels([f"{i}" for i in indices[24::25]], fontsize=12) ax.tick_params(axis='both', labelsize=12) fig.tight_layout() return fig, ax
[docs] def plotTimeSeries(time:np.ndarray, truth:np.ndarray, pred:np.ndarray, std:np.ndarray = None): ''' Function to plot the comparison between the truth and predicted N temporal series. ''' N, nt = truth.shape std = std if std is not None else np.zeros((N,nt)) fig, axs = plt.subplots(N,1, figsize=(20, 3*N)) axs = axs.flatten() for rr in range(len(axs)): if rr == 0: axs[rr].plot(time, pred[rr], 'r-.', label='Prediction') axs[rr].plot(time, truth[rr], 'b--', label='Truth') else: axs[rr].plot(time, pred[rr], 'r-.') axs[rr].plot(time, truth[rr], 'b--') axs[rr].fill_between(time, pred[rr] - 1.96*std[rr], pred[rr] + 1.96*std[rr], color='r', alpha=0.25) #95% confidence interval of a Gaussian distribution axs[rr].set_ylabel('Mode %i' % rr) fig.legend() fig.tight_layout() return fig, axs
try: import pyvista as pv def _cells_and_offsets(conec): ''' Build the offsets and cells array to create am UnstructuredGrid ''' # Compute points per cell ppcell = np.sum(conec >= 0,axis=1) # Compute cells for pyVista, with the number of points per cell on front cells = np.c_[ppcell,conec] # Now we get rid of any -1 entries for mixed meshes cellsf = cells.flatten('c') cellsf = cellsf[cellsf>=0] # Now build the offsets vector offset = np.zeros((ppcell.shape[0]+1,),np.int32) offset[1:] = np.cumsum(ppcell) return cellsf, offset @cr('plots.pyvista_snap') def plotSnapshot(mesh,dset,vars=[],idim=0,instant=0,**kwargs): ''' Plot using pyVista ''' # First create the unstructured grid cells, offsets = _cells_and_offsets(mesh.connectivity) # Create the unstructured grid ugrid = pv.UnstructuredGrid(offsets,cells,mesh.eltype2VTK,mesh.xyz) if pv.vtk_version_info < (9,) else pv.UnstructuredGrid(cells,mesh.eltype2VTK,mesh.xyz) # Load the variables inside the unstructured grid for v in vars: info = dset.info(v) sliced = tuple([np.s_[:]] + [0 if i != idim else instant for i in range(len(dset[v].shape)-1)]) if info['point']: ugrid.point_data[v] = mesh.reshape_var(dset[v][sliced],info) else: ugrid.cell_data[v] = mesh.reshape_var(dset[v][sliced],info) # Launch plot return ugrid.plot(**kwargs) @cr('plots.pyvista_layout') def plotLayout(mesh,dset,nrows,ncols,imode,vars=[],cmap='jet',title='',off_screen=False,**kwargs): ''' Plot using pyVista ''' # First create the unstructured grid cells, offsets = _cells_and_offsets(mesh.connectivity) # Create the unstructured grid ugrid = pv.UnstructuredGrid(offsets,cells,mesh.eltype2VTK,mesh.xyz) if pv.vtk_version_info < (9,) else pv.UnstructuredGrid(cells,mesh.eltype2VTK,mesh.xyz) # Load the variables inside the unstructured grid plotter = pv.Plotter(shape=(nrows,ncols),off_screen=off_screen) irow, icol = 0, 0 for ivar, v in enumerate(vars): # Add variable to mesh info = dset.info(v) if info['point']: ugrid.point_data[v] = mesh.reshape_var(dset[v],info) else: ugrid.cell_data[v] = mesh.reshape_var(dset[v],info) # Plot plotter.subplot(irow,icol) if ivar == 0: plotter.add_text(title) plotter.add_mesh(ugrid,scalars=v,cmap=cmap,component=imode,copy_mesh=True) # Check irow, icol bounds icol += 1 if icol == ncols: icol = 0 irow += 1 # Launch plot return plotter.show(**kwargs) except:
[docs] def plotSnapshot(mesh,dset,vars=[],idim=0,instant=0,**kwargs): ''' Plot using pyVista ''' raiseWarning('Import - Problems loading pyVista!',False)
def plotLayout(mesh,dset,nrows,ncols,imode,vars=[],cmap='jet',title='',off_screen=False,**kwargs): ''' Plot using pyVista ''' raiseWarning('Import - Problems loading pyVista!',False)