Source code for pyLOM.PCA.wrapper
#!/usr/bin/env python
#
# pyLOM - Python Low Order Modeling.
#
# Python interface for PCA.
#
# Last rev: 11/04/2025
from __future__ import print_function
import numpy as np ## Only for documentation
from scipy.stats import f
from ..POD import run as podrun
from ..vmmath import vecmat
from ..utils.cr import cr_nvtx as cr
[docs]
@cr('PCA.run')
def run(X:np.ndarray, divide_variance:bool=True, randomized:bool=False, r:int=1, q:int=3, seed:int=-1):
r'''
Run PCA analysis of a matrix.
Args:
X (np.ndarray): data matrix of size [ndims*nmesh,n_temp_snapshots].
divide_variance (bool, optional): whether or not to normalize the data with the variance. It is only effective when removing the mean (default: ``False``).
randomized (bool, optional): whether to perform randomized PCA or not (default: ``False``).
r (int, optional): in case of performing randomized PCA, how many modes do we want to recover. This option has no effect when randomized=False (default: ``1``).
q (int, optional): in case of performing randomized PCA, how many power iterations are performed. This option has no effect when randomized=False (default: ``3``).
seed (int, optional): seed for reproducibility of randomized operations. This option has no effect when randomized=False (default: ``-1``).
Returns:
[(np.ndarray), (np.ndarray)]: components and scores.
'''
U,S,V = podrun(X, remove_mean=True, divide_variance=divide_variance, randomized=randomized, r=r, q=q, seed=seed)
return U, vecmat(S,V).T