Source code for pyLOM.PCA.wrapper

#!/usr/bin/env python
#
# pyLOM - Python Low Order Modeling.
#
# Python interface for PCA.
#
# Last rev: 11/04/2025
from __future__ import print_function
import numpy as np ## Only for documentation

from scipy.stats import f

from ..POD       import run as podrun
from ..vmmath    import vecmat
from ..utils.cr  import cr_nvtx as cr

[docs] @cr('PCA.run') def run(X:np.ndarray, divide_variance:bool=True, randomized:bool=False, r:int=1, q:int=3, seed:int=-1): r''' Run PCA analysis of a matrix. Args: X (np.ndarray): data matrix of size [ndims*nmesh,n_temp_snapshots]. divide_variance (bool, optional): whether or not to normalize the data with the variance. It is only effective when removing the mean (default: ``False``). randomized (bool, optional): whether to perform randomized PCA or not (default: ``False``). r (int, optional): in case of performing randomized PCA, how many modes do we want to recover. This option has no effect when randomized=False (default: ``1``). q (int, optional): in case of performing randomized PCA, how many power iterations are performed. This option has no effect when randomized=False (default: ``3``). seed (int, optional): seed for reproducibility of randomized operations. This option has no effect when randomized=False (default: ``-1``). Returns: [(np.ndarray), (np.ndarray)]: components and scores. ''' U,S,V = podrun(X, remove_mean=True, divide_variance=divide_variance, randomized=randomized, r=r, q=q, seed=seed) return U, vecmat(S,V).T