Source code for pyLOM.POD.wrapper

#!/usr/bin/env python
#
# pyLOM - Python Low Order Modeling.
#
# Python interface for POD.
#
# Last rev: 09/07/2021
from __future__ import print_function
import numpy as np ## Only for documentation

from ..vmmath       import vecmat, matmul, temporal_mean, subtract_mean, tsqr_svd, randomized_svd, compute_truncation_residual
from ..utils.cr     import cr_nvtx as cr, cr_start, cr_stop


## POD run method
[docs] @cr('POD.run') def run(X:np.ndarray,remove_mean:bool=True, randomized:bool=False, r:int=1, q:int=3, seed:int=-1): r''' Run POD analysis of a matrix. Args: X (np.ndarray): data matrix of size [ndims*nmesh,n_temp_snapshots]. remove_mean (bool, optional): whether or not to remove the mean flow (default: ``True``). randomized (bool, optional): whether to perform randomized POD or not (default: ``False``). r (int, optional): in case of performing randomized POD, how many modes do we want to recover. This option has no effect when randomized=False (default: ``1``). q (int, optional): in case of performing randomized POD, how many power iterations are performed. This option has no effect when randomized=False (default: ``3``). seed (int, optional): seed for reproducibility of randomized operations. This option has no effect when randomized=False (default: ``-1``). Returns: [(np.ndarray), (np.ndarray), (np.ndarray)]: POD spatial modes (left singular vectors), singular values and temporal coefficients (right singular vectors). ''' if remove_mean: cr_start('POD.temporal_mean',0) # Compute temporal mean X_mean = temporal_mean(X) # Compute substract temporal mean Y = subtract_mean(X,X_mean) cr_stop('POD.temporal_mean',0) else: Y = X.copy() # Compute SVD cr_start('POD.SVD',0) U,S,V = tsqr_svd(Y) if not randomized else randomized_svd(Y,r,q,seed=seed) cr_stop('POD.SVD',0) # Return return U,S,V
## POD truncate method
[docs] @cr('POD.truncate') def truncate(U:np.ndarray,S:np.ndarray,V:np.ndarray,r:float=1e-8): r''' Truncate POD matrices (U, S, V) given a residual, number of modes or cumulative energy r. Args: U (np.ndarray): of size (m,n), are the POD modes. S (np.ndarray): of size (n), are the singular values. V (np.ndarray): of size (n,n), are the right singular vectors. r (float, optional) target residual, number of modes, or cumulative energy threshold (default: ``1e-8``). * If r >= 1, it is treated as the number of modes. * If r < 1 and r > 0 it is treated as the residual target. * If r < 1 and r < 0 it is treated as the fraction of cumulative energy to retain. Note: must be in (0,-1] and r = -1 is valid Returns: [(np.array), (np.array), (np.array)]: Truncated POD spatial modes (left singular vectors), singular values and temporal coefficients (right singular vectors). ''' # Compute N using S N = int(r) if r >= 1 else compute_truncation_residual(S, r) # Truncate Ur = U[:,:N] Sr = S[:N] Vr = V[:N,:] # Return return Ur, Sr, Vr
## POD reconstruct method
[docs] @cr('POD.reconstruct') def reconstruct(U:np.ndarray,S:np.ndarray,V:np.ndarray): r''' Reconstruct the flow given the POD decomposition matrices that can be possibly truncated. N is the truncated size n is the number of snapshots Args: U (np.ndarray): of size (m,n), are the POD modes. S (np.ndarray): of size (n), are the singular values. V (np.ndarray): of size (n,n), are the right singular vectors. Returns: (np.array): Reconstructed flow. ''' # Compute X = U x S x VT return matmul(U,vecmat(S,V))