Source code for pyLOM.POD.plots
#!/usr/bin/env python
#
# pyLOM - Python Low Order Modeling.
#
# POD plotting utilities.
#
# Last rev: 27/10/2021
from __future__ import print_function, division
import numpy as np
import matplotlib.pyplot as plt
from ..vmmath import fft
from ..utils import gpu_to_cpu
[docs]
def plotMode(V:np.ndarray,t:np.ndarray,modes:np.ndarray=np.array([1],np.int32),fftfun:object=fft,scale_freq:np.double=1.,fig:plt.figure=[],ax:plt.axes=[]):
r'''
Plot the temporal coefficient and its frequency spectrom of a set of modes
Args:
V (np.ndarray): array containing the temporal coefficients from the POD modes
t (np.ndarray): array containing the time values
modes (np.ndarray): array with the modes to plot
fftfun (object, optional): function to use to compute the frequency spectra (default: ``fft``)
scale_freq (double, optional): value used to non-dimensionalize the frequencies (default: ``1``)
fig (plt.figure, optional): figure object in which the plot will be done (default: ``[]``)
axs (plt.axes, optional): axes object in which the plot will be done (default: ``[]``)
Returns:
[plt.figure, plt.axes]: figure and axes objects of the plot
'''
V = gpu_to_cpu(V)
for imode, mode in enumerate(modes):
if len(fig) < imode + 1:
fig.append( plt.figure(figsize=(8,6),dpi=100) )
if len(ax) < imode + 1:
ax.append( fig[imode].subplots(2,1,gridspec_kw = {'hspace':0.5}) )
fig[imode].suptitle('Mode %d'%(mode-1))
# Plot the temporal evolution of the mode
ax[imode][0].plot(t,V[mode-1,:],'b')
ax[imode][0].set_title('Temporal mode')
# Plot frequency representation of the mode
if V.shape[1] % 2 == 0:
freq,psd = fftfun(t,V[mode-1,:],equispaced=False)
else:
freq,psd = fftfun(t[:-1],V[mode-1,:-1],equispaced=False)
freq *= scale_freq
#L = int(np.floor(freq.shape[0]/2))
ax[imode][1].plot(freq,psd, 'b')
ax[imode][1].set_title('Power Spectrum')
ax[imode][1].set_xlabel('St')
ax[imode][1].set_xlim([0,1])
return fig, ax