Source code for pyLOM.NN.optimizer

#!/usr/bin/env python
#
# pyLOM - Python Low Order Modeling.
#
# NN optimizer routines using optuna.
#
# Last rev: 02/10/2024

import json

from typing         import Callable, Dict
from ..utils.errors import raiseError
from ..             import pprint

# Add optuna as an optional dependency
try:
    import optuna
    from optuna.trial      import TrialState
    from optuna.exceptions import TrialPruned


    class OptunaOptimizer():
        """
        Args:
            optimization_params (Dict): A dictionary containing the parameters to optimize.
            n_trials (int): The number of trials to run. Default is ``100``.
            direction (str): The direction to optimize. Can be 'minimize' or 'maximize'. Default is ``'minimize'``.
            pruner (optuna.pruners.BasePruner): The pruner to use. Default is ``None``.
            save_dir (str): The directory to save the best parameters. Default is ``None``.
        """
        def __init__(
            self,
            optimization_params: Dict,
            n_trials: int = 100,
            direction: str = 'minimize',
            pruner: optuna.pruners.BasePruner = None,
            save_dir: str = None
        ):
            self.num_trials = n_trials
            self.direction = direction
            self.pruner = pruner
            self._optimization_params = optimization_params
            self.save_dir = save_dir

        @property
        def optimization_params(self) -> Dict:
            """
            Get the optimization parameters.
            """
            return self._optimization_params

[docs] def optimize( self, objective_function: Callable[[optuna.Trial], float], ) -> Dict: """ Optimize a model given an objective function. Args: objective_function (Callable): The objective function to optimize. The function should take a `optuna.Trial` object as input and return a float. Returns: Dict: The best parameters obtained from the optimization. """ study = optuna.create_study(direction=self.direction, pruner=self.pruner) study.optimize(objective_function, n_trials=self.num_trials) if self.save_dir is not None: file_path = str(self.save_dir) + '/best_params.json' json.dump(study.best_params, open(file_path, 'w')) self._print_optimization_report(study) return study.best_params
def _print_optimization_report(self, study): pruned_trials = study.get_trials(deepcopy=False, states=[TrialState.PRUNED]) completed_trials = study.get_trials(deepcopy=False, states=[TrialState.COMPLETE]) # Optimization report pprint(0, "\nStudy statistics: ") pprint(0, " Number of finished trials: ", len(study.trials)) pprint(0, " Number of pruned trials: ", len(pruned_trials)) pprint(0, " Number of completed trials: ", len(completed_trials)) trial = study.best_trial pprint(0, "Best trial:") pprint(0, " Value: ", trial.value) pprint(0, " Params: ") for key, value in trial.params.items(): pprint(0, " {}: {}".format(key, value)) pprint(0, "\n") except: def TrialState(): raiseError("Package optuna should be installed") def TrialPruned(): raiseError("Package optuna should be installed")
[docs] class OptunaOptimizer(): """ Args: optimization_params (Dict): A dictionary containing the parameters to optimize. n_trials (int): The number of trials to run. Default is ``100``. direction (str): The direction to optimize. Can be 'minimize' or 'maximize'. Default is ``'minimize'``. pruner (optuna.pruners.BasePruner): The pruner to use. Default is ``None``. save_dir (str): The directory to save the best parameters. Default is ``None``. """ def __init__(self,*args,**kwargs): raiseError("Package optuna should be installed")