Source code for pyLOM.NN.callbacks

#!/usr/bin/env python
#
# pyLOM - Python Low Order Modeling.
#
# NN callback routines.
#
# Last rev: 02/10/2024
from __future__ import print_function

import numpy as np


## Early stopper callback
[docs] class EarlyStopper: r""" Early stopper callback. Args: patience (int): Number of epochs to wait before stopping the training. Default: ``1``. min_delta (float): Minimum change in the monitored quantity to qualify as an improvement. Default: ``0``. """ def __init__(self, patience: int = 1, min_delta: float = 0): self.patience = patience self.min_delta = min_delta self.counter = 0 self.min_validation_loss = np.inf
[docs] def early_stop(self, validation_loss: float, prev_train: float, train: float) -> bool: r""" Early stopper routine. The training will stop if the validation loss does not improve for a number of epochs. Args: validation_loss (float): Validation loss. prev_train (float): Previous training loss. train (float): Current training loss. Returns: bool: True if early stopping is triggered, False otherwise. """ if validation_loss < self.min_validation_loss: self.min_validation_loss = validation_loss self.counter = 0 elif validation_loss > (self.min_validation_loss + self.min_delta): self.counter += 1 if self.counter >= self.patience: return True elif prev_train < train: self.counter += 1 if self.counter >= self.patience: return True return False