from abc import ABC, abstractmethod
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.utils
from torch.utils.data import DataLoader
from ... import pprint, cr # pyLOM/__init__.py
from ..utils import Dataset
[docs]
class PINN(ABC):
"""
This class represents a Physics-Informed Neural Network (PINN) model. It is an abstract class that needs to be subclassed to implement the pde_loss method.
That method should compute the residual from the partial differential equation (PDE) and then compute the loss from it (usually by squaring the residual).
Args:
neural_net (torch.nn.Module): A neural network model that implements torch.nn.Module.
device (str): The device to run the model on (e.g., 'cpu', 'cuda').
Attributes:
device (str): The device the model is running on.
model (torch.nn.Module): The neural network model.
"""
def __init__(self, neural_net, device):
self.device = device
self.model = neural_net.to(device)
[docs]
def __call__(self, x):
"""
Forward pass of the PINN model.
Args:
x (torch.Tensor): The input tensor with the PDE input parameters.
Returns:
torch.Tensor: The output tensor, i.e. the solution for the PDE on x.
"""
return self.model(x)
def _prepare_input_variables(self, x_batch):
"""
Prepares the input variables for training.
Args:
x_batch (torch.Tensor): The input batch tensor.
Returns:
List[torch.Tensor]: The list of prepared input variables.
"""
input_variables = []
for input_variable in range(x_batch.shape[1]):
flow_variable = x_batch[:, input_variable : input_variable + 1]
flow_variable.requires_grad_(True)
input_variables.append(flow_variable)
return input_variables
def _get_dataloader(self, dataset, batch_size=None):
"""
Creates data loaders for training.
Args:
x (torch.Tensor): The input tensor.
y (torch.Tensor, optional): The target tensor. Defaults to None.
batch_size (int, optional): The batch size. Defaults to None.
Returns:
Union[torch.utils.data.DataLoader, List[torch.Tensor]]: The data loaders.
"""
if batch_size is not None:
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=False, num_workers=1, persistent_workers=True)
else:
data_loader = [dataset[:]]
return data_loader
[docs]
def bc_data_loss(self, pred, y, boundary_conditions, use_bfloat16=False):
"""
Computes the loss from boundary conditions and data.
Args:
pred (torch.Tensor): The predicted output tensor.
y (torch.Tensor): The target tensor.
boundary_conditions (List[BoundaryCondition]): The list of boundary conditions.
use_bfloat16 (bool, optional): Whether to use bfloat16 precision. Defaults to False.
Returns:
List[torch.Tensor]: The list of loss tensors.
"""
if use_bfloat16:
with torch.autocast("cuda", dtype=torch.bfloat16):
bc_losses = [bc.loss(self.model(bc.points.to(self.device))) for bc in boundary_conditions]
else:
bc_losses = [bc.loss(self.model(bc.points.to(self.device))) for bc in boundary_conditions]
if y is not None:
data_loss = torch.nn.functional.mse_loss(pred, y.to(self.device))
bc_losses.append(data_loss)
return bc_losses
[docs]
def compute_loss(self, x, y, boundary_conditions, use_bfloat16=False):
"""
Computes the total loss for training.
Args:
x (torch.Tensor): The input tensor.
y (torch.Tensor): The target tensor.
boundary_conditions (List[BoundaryCondition]): The list of boundary conditions.
use_bfloat16 (bool, optional): Whether to use bfloat16 precision. Defaults to False.
Returns:
List[torch.Tensor]: The list of loss tensors.
"""
input_variables = self._prepare_input_variables(x)
input_tensor = torch.cat(input_variables, dim=1).to(self.device)
if use_bfloat16:
with torch.autocast("cuda", dtype=torch.bfloat16):
pred = self.model(input_tensor)
else:
pred = self.model(input_tensor)
return [self.pde_loss(pred, *input_variables)] + self.bc_data_loss(pred, y, boundary_conditions, use_bfloat16)
[docs]
@cr("PINN.fit")
def fit(
self,
train_dataset: Dataset,
optimizer_class=torch.optim.Adam,
optimizer_params={},
lr_scheduler_class=None,
lr_scheduler_params={},
epochs=1000,
boundary_conditions=[],
update_logs_steps=1,
loaded_logs=None,
batch_size=None,
eval_dataset: Dataset = None,
use_bfloat16=False,
**kwargs,
):
"""
Trains the PINN model.
Args:
train_dataset (Dataset): The training dataset. If the dataset returns a tuple, the first element is the input and the second element is the target. If not, the PINN is trained without simulation data.
optimizer_class (torch.optim.Optimizer, optional): The optimizer class. Defaults to ``torch.optim.Adam``.
optimizer_params (dict, optional): The optimizer parameters. Defaults to ``{}``.
lr_scheduler_class (torch.optim.lr_scheduler._LRScheduler, optional): The learning rate scheduler class. Defaults to ``None``.
lr_scheduler_params (dict, optional): The learning rate scheduler parameters. Defaults to ``{}``.
epochs (int, optional): The number of epochs to train for. Defaults to ``1000``.
boundary_conditions (List[BoundaryCondition], optional): The list of boundary conditions. Defaults to ``[]``.
update_logs_steps (int, optional): The interval for updating the progress. Defaults to ``100``.
loaded_logs (dict, optional): Loaded training logs to be used as initial logs. Defaults to ``None``.
batch_size (int, optional): The batch size. If none, the batch size will be equal to the number of collocation points given on `train_dataset`. Defaults to ``None``.
eval_dataset (BaseDataset, optional): The evaluation dataset. Defaults to ``None``.
use_bfloat16 (bool, optional): Whether to use bfloat16 precision. Defaults to ``False``.
**kwargs: Additional keyword arguments.
Returns:
dict: The training logs.
"""
logs = (
loaded_logs
if loaded_logs is not None
else {
"loss_from_pde": [],
"loss_from_data_and_bc": [],
"total_loss": [],
}
)
train_data_loader = self._get_dataloader(train_dataset, batch_size)
test_data_loader = None
if eval_dataset is not None:
test_data_loader = self._get_dataloader(eval_dataset, batch_size)
if "test_loss" not in logs:
logs["test_loss"] = []
optimizer = optimizer_class(self.model.parameters(), **optimizer_params)
if lr_scheduler_class is not None:
lr_scheduler = lr_scheduler_class(optimizer, **lr_scheduler_params)
def closure():
x_batch = batch[0].to(self.device)
y_batch = batch[1].to(self.device) if len(batch) == 2 else None
optimizer.zero_grad()
losses = self.compute_loss(x_batch, y_batch, boundary_conditions, use_bfloat16)
loss = sum(losses)
loss.backward()
loss_from_pde = losses[0].item()
logs["loss_from_pde"].append(loss_from_pde)
logs["loss_from_data_and_bc"].append(loss.item() - loss_from_pde)
logs["total_loss"].append(loss.item())
if update_logs_steps != 0 and (epoch % update_logs_steps == 0):
extended_desc = ''
if len(losses) > 1:
extended_desc = f", data/bc losses: [{', '.join(f'{x:.4e}' for x in losses[1:])}]"
if 'test_loss' in logs and len(logs['test_loss']) > 0:
extended_desc += f", test loss: {logs['test_loss'][-1]:.4e}"
desc = f"Epoch {epoch+1}/{epochs} Iteration {closure.iteration}. Pde loss: {loss_from_pde:.4e}" + extended_desc
pprint(0, desc)
closure.iteration += 1
return loss
self.model.train()
for epoch in range(epochs):
closure.iteration = 0
for batch in train_data_loader:
optimizer.step(closure=closure)
if lr_scheduler_class is not None:
lr_scheduler.step()
if test_data_loader is not None:
self.model.eval()
test_loss = 0
for batch in test_data_loader:
x_batch = batch[0].to(self.device)
y_batch = batch[1].to(self.device) if len(batch) == 2 else None
losses = self.compute_loss(x_batch, y_batch, boundary_conditions)
test_loss += sum(losses).item()
logs["test_loss"].append(test_loss / len(test_data_loader))
self.model.train()
return logs
[docs]
@cr("PINN.predict")
def predict(self, X: Dataset, **kwargs) -> np.ndarray:
"""
Predicts for the input dataset.
Args:
X (Dataset): The input dataset.
Returns:
np.ndarray: The predictions of the model.
"""
self.model.eval()
data = X[:]
input_data = data[0] # keep only the input data
return self.model(input_data.to(self.device)).detach().cpu().numpy()
[docs]
def __repr__(self):
"""
Returns a string representation of the PINN model.
Returns:
str: The string representation.
"""
pprint(0, f"Number of parameters: {sum(p.numel() for p in self.model.parameters())}")
return self.model.__repr__()
[docs]
def plot_training_logs(self, logs):
"""
Plots the training logs.
Args:
logs (dict): The training logs.
"""
plt.figure(figsize=(10, 6))
plt.plot(logs["loss_from_pde"], label="PDE Loss")
plt.plot(logs["loss_from_data_and_bc"], label="Data Conditions and BC Loss")
plt.plot(logs["total_loss"], label="Total Loss")
if "test_loss" in logs and len(logs["test_loss"]) != 0:
total_epochs = len(logs["test_loss"])
total_iters = len(logs["total_loss"])
iters_per_epoch = total_iters // total_epochs
plt.plot(np.arange(iters_per_epoch + total_iters % total_epochs, total_iters+1, step=iters_per_epoch), logs["test_loss"], label="Test Loss")
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.yscale("log")
plt.title("Training Losses")
plt.legend()
plt.show()
[docs]
@abstractmethod
def pde_loss(self, pred, *input_variables):
"""
Computes the loss from the partial differential equation (PDE).
Args:
pred (torch.Tensor): The predicted output tensor.
*input_variables (torch.Tensor): The input variables for the PDE. e.g. x, y, t.
Returns:
torch.Tensor: The loss tensor.
"""
pass
[docs]
def save(self, path):
"""
Saves the model to a file using torchscript.
Args:
path (str): The path to save the model.
"""
path = Path(path)
scripted_model = torch.jit.script(self.model)
scripted_model.save(path)
[docs]
@classmethod
def load(cls, path, device='cpu'):
"""
Loads the model from a file.
Args:
path (str): The path to load the model.
neural_net (torch.nn.Module): The neural network model.
device (str, optional): The device to run the model on. Defaults to 'cpu'.
Returns:
PINN: The loaded PINN model.
"""
model = torch.jit.load(path, map_location=device)
return cls(neural_net=model, device=device)
[docs]
class BoundaryCondition(ABC):
"""
Abstract base class for defining boundary conditions. You need to implement the `loss` method to use a custom boundary condition.
Args:
points (Tensor): The points where the boundary condition is defined.
Attributes:
points (Tensor): The points where the boundary condition is defined.
"""
def __init__(self, points):
self._points = points
self._points.requires_grad_(True)
[docs]
@abstractmethod
def loss(self, pred):
"""
Computes the loss for the given prediction.
Args:
pred (Tensor): The predicted values on the points where the boundary condition is defined.
Returns:
Tensor: The loss value.
"""
pass
@property
def points(self):
return self._points
class DirichletCondition(BoundaryCondition):
"""
This class represents a Dirichlet boundary condition.
Args:
points (Tensor): The predicted values on the points where the boundary condition is defined.
values (Tensor): The values of the boundary condition.
"""
def __init__(self, points, values):
super().__init__(points)
self._values = values
def loss(self, pred):
return torch.mean((pred - self._values) ** 2)
[docs]
class BurgersPINN(PINN):
r"""
This class represents a Physics-Informed Neural Network (PINN) model for the Burgers' equation.
The model predictions have 1 column, the velocity field :math:`u`.
.. math::
\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} = \nu\frac{\partial^2u}{\partial x^2}
Args:
neural_net (torch.nn.Module): The neural network model.
device (str): The device to run the model on (e.g., 'cpu', 'cuda').
viscosity (float): The viscosity coefficient.
"""
def __init__(self, neural_net, device, viscosity=0.01):
super().__init__(neural_net, device)
self.viscosity = viscosity
[docs]
def pde_loss(self, pred, *input_variables):
t, x = input_variables
u = pred
u_t = torch.autograd.grad(u, t, grad_outputs=torch.ones_like(u), create_graph=True)[0]
u_x = torch.autograd.grad(u, x, grad_outputs=torch.ones_like(u), create_graph=True)[0]
u_xx = torch.autograd.grad(u_x, x, grad_outputs=torch.ones_like(u_x), create_graph=True)[0]
f = u_t + u * u_x - (self.viscosity / torch.pi) * u_xx
return (f ** 2).mean()
[docs]
class NavierStokesIncompressible2DPINN(PINN):
r"""
This class represents a Physics-Informed Neural Network (PINN) model for the incompressible steady 2D Navier-Stokes equations.
The model predictions have 3 columns, the velocity field :math:`(u, v)` and the pressure :math:`p` fields.
.. math::
\begin{align*}
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{\partial p}{\partial x} - \frac{1}{Re} \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) &= 0, \\
u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial p}{\partial y} - \frac{1}{Re} \left( \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) &= 0, \\
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0.
\end{align*}
Args:
neural_net (torch.nn.Module): The neural network model.
device (str): The device to run the model on (e.g., 'cpu', 'cuda').
Re (float): The Reynolds number.
"""
def __init__(self, neural_net, device, Re=50):
super().__init__(neural_net, device)
self.Re = Re
[docs]
def pde_loss(self, pred , x, y):
u, v, p= pred[:, 0:1], pred[:, 1:2], pred[:, 2:3]
# Spatial gradients
u_x = torch.autograd.grad(u, x, grad_outputs=torch.ones_like(u), create_graph=True)[0]
u_y = torch.autograd.grad(u, y, grad_outputs=torch.ones_like(u), create_graph=True)[0]
v_x = torch.autograd.grad(v, x, grad_outputs=torch.ones_like(v), create_graph=True)[0]
v_y = torch.autograd.grad(v, y, grad_outputs=torch.ones_like(v), create_graph=True)[0]
p_x = torch.autograd.grad(p, x, grad_outputs=torch.ones_like(p), create_graph=True)[0]
p_y = torch.autograd.grad(p, y, grad_outputs=torch.ones_like(p), create_graph=True)[0]
# Second order spatial gradients
u_xx = torch.autograd.grad(u_x, x, grad_outputs=torch.ones_like(u_x), create_graph=True)[0]
u_yy = torch.autograd.grad(u_y, y, grad_outputs=torch.ones_like(u_y), create_graph=True)[0]
v_xx = torch.autograd.grad(v_x, x, grad_outputs=torch.ones_like(v_x), create_graph=True)[0]
v_yy = torch.autograd.grad(v_y, y, grad_outputs=torch.ones_like(v_y), create_graph=True)[0]
# Continuity equation
continuity = u_x + v_y
# Momentum equations
momentum_u = u * u_x + v * u_y + p_x - (1 / self.Re) * (u_xx + u_yy)
momentum_v = u * v_x + v * v_y + p_y - (1 / self.Re) * (v_xx + v_yy)
# Total loss
loss_continuity = torch.mean(continuity ** 2)
loss_momentum_u = torch.mean(momentum_u ** 2)
loss_momentum_v = torch.mean(momentum_v ** 2)
loss = loss_continuity + loss_momentum_u + loss_momentum_v
return loss
[docs]
class Euler2DPINN(PINN):
# TODO: review the equations once sphinx documentation is working
r"""
This class represents a Physics-Informed Neural Network (PINN) model for the 2D Euler equations.
The model predictions have 4 columns, the density :math:`\rho`, the velocity field :math:`(u, v)` and the total energy :math:`E` fields.
.. math::
\begin{align*}
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} &= 0, \\
\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} + \frac{\partial (\rho uv)}{\partial y} &= 0, \\
\frac{\partial (\rho v)}{\partial t} + \frac{\partial (\rho uv)}{\partial x} + \frac{\partial (\rho v^2 + p)}{\partial y} &= 0, \\
\frac{\partial (\rho E)}{\partial t} + \frac{\partial (u(\rho E + p))}{\partial x} + \frac{\partial (v(\rho E + p))}{\partial y} &= 0.
\end{align*}
Args:
neural_net (torch.nn.Module): The neural network model.
device (str): The device to run the model on (e.g., 'cpu', 'cuda').
"""
GAMMA = 1.4
[docs]
def pde_loss(self, pred, *input_variables):
x_coord = input_variables[0]
y_coord = input_variables[1]
rho, u, v, E = pred[:, 0:1], pred[:, 1:2], pred[:, 2:3], pred[:, 3:4]
p = (Euler2DPINN.GAMMA - 1.0) * (E - 0.5 * rho * (u**2 + v**2))
# F
F1 = rho * u
F2 = rho * u**2 + p
F3 = rho * u * v
F4 = u * (E + p)
# G
G1 = rho * v
G2 = rho * u * v
G3 = rho * v**2 + p
G4 = v * (E + p)
dF1_dx = torch.autograd.grad(F1, x_coord, grad_outputs=torch.ones_like(F1), create_graph=True)[0]
dF2_dx = torch.autograd.grad(F2, x_coord, grad_outputs=torch.ones_like(F2), create_graph=True)[0]
dF3_dx = torch.autograd.grad(F3, x_coord, grad_outputs=torch.ones_like(F3), create_graph=True)[0]
dF4_dx = torch.autograd.grad(F4, x_coord, grad_outputs=torch.ones_like(F4), create_graph=True)[0]
dG1_dy = torch.autograd.grad(G1, y_coord, grad_outputs=torch.ones_like(G1), create_graph=True)[0]
dG2_dy = torch.autograd.grad(G2, y_coord, grad_outputs=torch.ones_like(G2), create_graph=True)[0]
dG3_dy = torch.autograd.grad(G3, y_coord, grad_outputs=torch.ones_like(G3), create_graph=True)[0]
dG4_dy = torch.autograd.grad(G4, y_coord, grad_outputs=torch.ones_like(G4), create_graph=True)[0]
residual_mass_conserv = dF1_dx + dG1_dy
residual_momentum_x = dF2_dx + dG2_dy
residual_momentum_y = dF3_dx + dG3_dy
residual_energy = dF4_dx + dG4_dy
loss_mass_conserv = torch.mean((residual_mass_conserv) ** 2)
loss_momentum_x = torch.mean((residual_momentum_x) ** 2)
loss_momentum_y = torch.mean((residual_momentum_y) ** 2)
loss_energy = torch.mean((residual_energy) ** 2)
loss = loss_mass_conserv + loss_momentum_x + loss_momentum_y + loss_energy
return loss