#!/usr/bin/env python
#
# pyLOM - Python Low Order Modeling.
#
# Encoder-Decoder architecture for NN Module
#
# Last rev: 09/10/2024
import torch.nn as nn
import torch
[docs]
class Encoder2D(nn.Module):
r"""
Encoder2D class for the 2D Convolutional Autoencoder.
Args:
nlayers (int): Number of layers in the encoder.
latent_dim (int): Latent dimension of the encoder.
nh (int): Height of the input mesh/image.
nw (int): Width of the input mesh/image.
input_channels (int): Number of input channels.
filter_channels (int): Number of filter channels.
kernel_size (int): Kernel size for the convolutional layers.
padding (int): Padding for the convolutional layers.
activation_funcs (list): List of activation functions.
nlinear (int): Number of neurons in the linear layer.
batch_norm (bool): Whether to use batch normalization. Default is ``False``.
stride (int): Stride for the convolutional layers. Default is ``2``.
dropout (float): Dropout probability. Default is ``0``.
vae (bool): Wheather the encoder is going to be used on a VAE or not. Default is ``False``.
"""
def __init__(
self,
nlayers: int,
latent_dim: int,
nh: int,
nw: int,
input_channels: int,
filter_channels: int,
kernel_size: int,
padding: int,
activation_funcs: list,
nlinear: int,
batch_norm: bool = False,
stride: int = 2,
dropout: float = 0,
vae: bool = False,
):
super(Encoder2D, self).__init__()
self.nlayers = nlayers
self.filt_chan = filter_channels
self.in_chan = input_channels
self.lat_dim = latent_dim
self.nh = nh
self.nw = nw
self.isvae = vae
self.funcs = activation_funcs
self.nlinear = nlinear
self.batch_norm = batch_norm
self.dropout = nn.Dropout(p=dropout)
# Create a list to hold the convolutional layers
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
in_channels = self.in_chan # Initial input channels
for ilayer in range(self.nlayers):
out_channels = self.filt_chan * (1 << ilayer) # Compute output channels
conv_layer = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
self.conv_layers.append(conv_layer)
if self.batch_norm:
self.norm_layers.append(nn.BatchNorm2d(out_channels))
in_channels = out_channels # Update in_channels for the next layer
self.flat = nn.Flatten()
fc_input_size = out_channels * (self.nh // (1 << self.nlayers)) * (self.nw // (1 << self.nlayers))
self.fc1 = nn.Linear(fc_input_size, self.nlinear)
if self.isvae:
self.mu = nn.Linear(self.nlinear, self.lat_dim)
self.logvar = nn.Linear(self.nlinear, self.lat_dim)
else:
self.z = nn.Linear(self.nlinear, self.lat_dim)
self._reset_parameters()
def _reset_parameters(self):
for layer in self.modules():
if isinstance(layer, nn.Conv2d):
nn.init.xavier_uniform_(layer.weight)
elif isinstance(layer, nn.Linear):
nn.init.xavier_uniform_(layer.weight)
[docs]
def forward(self, x:torch.Tensor):
r'''
Do a forward evaluation of the data.
Args:
x (torch.Tensor): input data to the neural network.
Returns:
(torch.Tensor): Prediction of the neural network.
'''
out = x
for ilayer, conv_layer in enumerate(self.conv_layers):
out = conv_layer(out)
if self.batch_norm:
out = self.norm_layers[ilayer](out)
out = self.funcs[ilayer](out)
out = self.funcs[ilayer+1](self.flat(out))
out = self.funcs[ilayer+2](self.fc1(out))
if self.isvae:
return self.mu(out), self.logvar(out)
else:
return self.z(out)
[docs]
class Decoder2D(nn.Module):
r"""
Decoder2D class for the 2D Convolutional Autoencoder.
Args:
nlayers (int): Number of layers in the encoder.
latent_dim (int): Latent dimension of the encoder.
nh (int): Height of the input mesh/image.
nw (int): Width of the input mesh/image.
input_channels (int): Number of input channels.
filter_channels (int): Number of filter channels.
kernel_size (int): Kernel size for the convolutional layers.
padding (int): Padding for the convolutional layers.
activation_funcs (list): List of activation functions.
nlinear (int): Number of neurons in the linear layer.
batch_norm (bool): Whether to use batch normalization. Default is ``False``.
stride (int): Stride for the convolutional layers. Default is ``2``.
dropout (float): Dropout probability. Default is ``0``.
"""
def __init__(
self,
nlayers: int,
latent_dim: int,
nh: int,
nw: int,
input_channels: int,
filter_channels: int,
kernel_size: int,
padding: int,
activation_funcs: list,
nlinear: int,
batch_norm: bool = False,
stride: int = 2,
dropout: float = 0,
):
super(Decoder2D, self).__init__()
self.nlayers = nlayers
self.filt_chan = filter_channels
self.in_chan = input_channels
self.lat_dim = latent_dim
self.nh = nh
self.nw = nw
self.funcs = activation_funcs
self.nlinear = nlinear
self.batch_norm = batch_norm
self.dropout = nn.Dropout(p=dropout)
self.fc1 = nn.Linear(in_features=self.lat_dim, out_features=self.nlinear)
fc_output_size = int((self.filt_chan * (1 << (self.nlayers-1)) * self.nh // (1 << self.nlayers) * self.nw // (1 << self.nlayers)))
self.fc2 = nn.Linear(in_features=self.nlinear, out_features=fc_output_size)
# Create a list to hold the transposed convolutional layers
self.deconv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
in_channels = self.filt_chan * (1 << self.nlayers-1)
for i in range(self.nlayers-1, 0, -1):
out_channels = self.filt_chan * (1 << (i - 1)) # Compute output channels
deconv_layer = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding)
self.deconv_layers.append(deconv_layer)
if self.batch_norm:
self.norm_layers.append(nn.BatchNorm2d(in_channels))
in_channels = out_channels # Update in_channels for the next layer
out_channels = self.in_chan
deconv_layer = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding)
self.deconv_layers.append(deconv_layer)
if self.batch_norm:
self.norm_layers.append(nn.BatchNorm2d(in_channels))
self._reset_parameters()
def _reset_parameters(self):
for layer in self.modules():
if isinstance(layer, nn.ConvTranspose2d):
nn.init.xavier_uniform_(layer.weight)
elif isinstance(layer, nn.Linear):
nn.init.xavier_uniform_(layer.weight)
[docs]
def forward(self, x:torch.Tensor):
r'''
Do a forward evaluation of the data.
Args:
x (torch.Tensor): input data to the neural network.
Returns:
(torch.Tensor): Prediction of the neural network.
'''
out = self.funcs[self.nlayers+1](self.fc1(x))
out = self.funcs[self.nlayers](self.fc2(out))
out = out.view(out.size(0), self.filt_chan * (1 << (self.nlayers-1)), int(self.nh // (1 << self.nlayers)), int(self.nw // (1 << self.nlayers)))
for ilayer, (deconv_layer) in enumerate(self.deconv_layers[:-1]):
if self.batch_norm:
out = self.norm_layers[ilayer](out)
out = self.funcs[self.nlayers-ilayer-1](deconv_layer(out))
return self.deconv_layers[-1](out)
[docs]
class Encoder3D(nn.Module):
r"""
Encoder3D class for the 3D Convolutional Encoder.
Args:
nlayers (int): Number of layers in the encoder.
latent_dim (int): Latent dimension of the encoder.
nx (int): Height of the input mesh/image.
ny (int): Width of the input mesh/image.
nz (int): Depth of the input mesh/image.
input_channels (int): Number of input channels.
filter_channels (int): Number of filter channels.
kernel_size (int): Kernel size for the convolutional layers.
padding (int): Padding for the convolutional layers.
activation_funcs (list): List of activation functions.
nlinear (int): Number of neurons in the linear layer.
batch_norm (bool): Whether to use batch normalization. Default is ``False``.
stride (int): Stride for the convolutional layers. Default is ``2``.
dropout (float): Dropout probability. Default is ``0``.
vae (bool): Wheather the encoder is going to be used on a VAE or not. Default is ``False``.
"""
def __init__(
self,
nlayers: int,
latent_dim: int,
nx: int,
ny: int,
nz: int,
input_channels: int,
filter_channels: int,
kernel_size: int,
padding: int,
activation_funcs: list,
nlinear: int,
batch_norm: bool = False,
stride: int = 2,
dropout: float = 0,
vae: bool = False,
):
super(Encoder3D,self).__init__()
self.nlayers = nlayers
self.filt_chan = filter_channels
self.in_chan = input_channels
self._lat_dim = latent_dim
self._nx = nx
self._ny = ny
self._nz = nz
self._isvae = vae
self.funcs = activation_funcs
self.nlinear = nlinear
self.batch_norm = batch_norm
self.dropout = nn.Dropout(p=dropout)
# List to hold the Conv Layers
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
in_channels = self.in_chan #Initial input channels
for ilayer in range(self.nlayers):
out_channels = self.filt_chan * (1 << ilayer) #Compute output channels using the shift operator
conv_layer = nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding)
self.conv_layers.append(conv_layer)
if self.batch_norm:
self.norm_layers.append(nn.BatchNorm3d(out_channels))
in_channels = out_channels # Update n of channels for the next layer
self.flat = nn.Flatten()
fc_input_size = out_channels * (self._nx // (1<<self.nlayers)) * (self._ny // (1<<self.nlayers)) * (self._nz // (1<<self.nlayers)) #Compute FullyConnected layer input size
self.fc1 = nn.Linear(fc_input_size, self.nlinear)
if self._isvae:
self.mu = nn.Linear(self.nlinear, self._lat_dim)
self.logvar = nn.Linear(self.nlinear, self._lat_dim)
else:
self.z = nn.Linear(self.nlinear, self._lat_dim)
self._reset_parameters()
def _reset_parameters(self):
for layer in self.modules():
if isinstance(layer, nn.Conv3d):
nn.init.xavier_uniform_(layer.weight)
elif isinstance(layer, nn.Linear):
nn.init.xavier_uniform_(layer.weight)
[docs]
def forward(self, x:torch.Tensor):
r'''
Do a forward evaluation of the data.
Args:
x (torch.Tensor): input data to the neural network.
Returns:
(torch.Tensor): Prediction of the neural network.
'''
out = x
for ilayer, conv_layer in enumerate(self.conv_layers):
out = conv_layer(out)
if self.batch_norm:
out=self.norm_layers[ilayer](out)
out = self.funcs[ilayer](out)
out = self.funcs[ilayer+1](self.flat(out))
out = self.funcs[ilayer+2](self.fc1(out))
if self._isvae:
return self.mu(out), self.logvar(out)
else:
return self.z(out)
[docs]
class Decoder3D(nn.Module):
r"""
Dencoder3D class for the 3D Convolutional Autoencoder.
Args:
nlayers (int): Number of layers in the encoder.
latent_dim (int): Latent dimension of the encoder.
nx (int): Height of the input mesh/image.
ny (int): Width of the input mesh/image.
nz (int): Depth of the input mesh/image.
input_channels (int): Number of input channels.
filter_channels (int): Number of filter channels.
kernel_size (int): Kernel size for the convolutional layers.
padding (int): Padding for the convolutional layers.
activation_funcs (list): List of activation functions.
nlinear (int): Number of neurons in the linear layer.
batch_norm (bool): Whether to use batch normalization. Default is ``False``.
stride (int): Stride for the convolutional layers. Default is ``2``.
dropout (float): Dropout probability. Default is ``0``.
"""
def __init__(
self,
nlayers: int,
latent_dim: int,
nx: int,
ny: int,
nz: int,
input_channels: int,
filter_channels: int,
kernel_size: int,
padding: int,
activation_funcs: list,
nlinear: int,
batch_norm: bool = False,
stride: int = 2,
dropout: float = 0,
):
super(Decoder3D, self).__init__()
self.nlayers = nlayers
self.filt_chan = filter_channels
self.in_chan = input_channels
self.lat_dim = latent_dim
self.nx = nx
self.ny = ny
self.nz = nz
self.funcs = activation_funcs
self.nlinear = nlinear
self.batch_norm = batch_norm
self.dropout = nn.Dropout(p=dropout)
self.fc1 = nn.Linear(in_features=self.lat_dim, out_features=self.nlinear)
fc_output_size = int((self.filt_chan * (1 << (self.nlayers-1)) * self.nx // (1 << self.nlayers) * self.ny // (1 << self.nlayers) * self.nz // (1 << self.nlayers)))
self.fc2 = nn.Linear(in_features=self.nlinear, out_features=fc_output_size)
# List to hold the transposed convolutional layers
self.deconv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
in_channels = self.filt_chan * (1 << self.nlayers-1)
for i in range(self.nlayers-1, 0, -1):
out_channels = self.filt_chan * (1 << (i - 1)) # Compute output channels
deconv_layer = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride, padding)
self.deconv_layers.append(deconv_layer)
if self.batch_norm:
self.norm_layers.append(nn.BatchNorm3d(in_channels))
in_channels = out_channels # Update in_channels for the next layer
out_channels = self.in_chan
deconv_layer = nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride, padding)
self.deconv_layers.append(deconv_layer)
if self.batch_norm:
self.norm_layers.append(nn.BatchNorm3d(in_channels))
self._reset_parameters()
def _reset_parameters(self):
for layer in self.modules():
if isinstance(layer, nn.ConvTranspose3d):
nn.init.xavier_uniform_(layer.weight)
elif isinstance(layer, nn.Linear):
nn.init.xavier_uniform_(layer.weight)
[docs]
def forward(self, x:torch.Tensor):
r'''
Do a forward evaluation of the data.
Args:
x (torch.Tensor): input data to the neural network.
Returns:
(torch.Tensor): Prediction of the neural network.
'''
out = self.funcs[self.nlayers+1](self.fc1(x))
out = self.funcs[self.nlayers](self.fc2(out))
out = out.view(out.size(0), self.filt_chan * (1 << (self.nlayers-1)), int(self.nx // (1 << self.nlayers)), int(self.ny // (1 << self.nlayers)), int(self.nz // (1 << self.nlayers)))
for ilayer, (deconv_layer) in enumerate(self.deconv_layers[:-1]):
if self.batch_norm:
out = self.norm_layers[ilayer](out)
out = self.funcs[self.nlayers-ilayer-1](deconv_layer(out))
return self.deconv_layers[-1](out)
[docs]
class ShallowDecoder(nn.Module):
r"""
Decoder used for the SHRED architecture.
Args:
output_size (int): Number of POD modes to predict.
hidden_size (int): Dimension of the LSTM hidden layers.
decoder_sizes (list): Integer list of the decoder layer sizes.
dropout (float): Dropout probability for the decoder.
"""
def __init__(self, output_size:int, hidden_size:int, decoder_sizes:list, dropout:float):
super(ShallowDecoder, self).__init__()
decoder_sizes.insert(0, hidden_size)
decoder_sizes.append(output_size)
self.layers = nn.ModuleList()
for i in range(len(decoder_sizes)-1):
self.layers.append(nn.Linear(decoder_sizes[i], decoder_sizes[i+1]))
if i != len(decoder_sizes)-2:
self.layers.append(nn.Dropout(dropout))
self.layers.append(nn.ReLU())
[docs]
def forward(self, output:torch.Tensor):
r'''
Do a forward evaluation of the data.
Args:
x (torch.Tensor): input data to the neural network.
Returns:
(torch.Tensor): Prediction of the neural network.
'''
for layer in self.layers:
output = layer(output)
return output